Boolean Expressions

A Boolean expression describes a digital circuit’s behavior using binary variables (0 or 1) and logical operators. It’s like a recipe for how inputs produce an output in a circuit.

A boolean expression is built of Variable, Operator and Constants.

  • Variables: A, B, C, etc. (binary inputs)
  • Operators: AND (·) , OR (+) , NOT (¬)
  • Constants: 0 (false), 1 (true)

Example: F = A·¬B + C , its read as Output F is 1 if (A AND NOT B) OR C is true


Standard Forms

FormStructureOutput FormatExample
Sum of Products (SOP)OR of multiple AND termsEach AND term = 1 combination of inputsA·B + A’·B
Product of Sums (POS)AND of multiple OR termsEach OR term = 1 combination of inputs(A + B)·(A’ + B)

These forms are useful for translating expressions directly into gate level circuits.


Canonical Forms

Canonical forms are standardized, exhaustive representations using all input variables.

Canonical FormComponentsOutput valueExample
Minterms (Canonical SOP)AND of all vars (true/false)Equals 1A·B·C or A’·B·C
Maxterms (Canonical POS)OR of all vars (true/false)Equals 0(A + B + C’) or (A + B’ + C)

In SOP Canonical, each minterm corresponds to one row in the truth table where output is 1. You can express entire functions by listing all minterms.

Example canonical-sop

If output is 1 for rows:
Row 1 (A=0, B=0), Row 3 (A=1, B=0)
→ Canonical SOP: A’·B’ + A·B’


Simplifying Expressions

Simplification helps reduce the number of gates in a circuit. This can be done using -

1. Boolean Algebra

Use boolean algebra rules to simplify expression.

Example - F = A·B + A·¬B

On applying Boolean identity: F = A(B + ¬B)

Since B + ¬B = 1, we get F = A·1 = A

This tells us the logic only depends on A and B is irrelevant.

2. Karnaugh Maps (K-maps)

A K-map is a grid-based tool to simplify Boolean expressions (best for 2-4 variables).

Steps:

  1. Fill in 1s for where the output is true.
  2. Group adjacent 1s in pairs, quads or octets
  3. Derive a simplified term for each group (combine variables that stay constant)

k-map